

School of **Computing and Information Systems**

Compressing Pre-trained Models of Code into 3 MB

Jieke Shi, Zhou Yang, Bowen Xu, Hong Jin Kang, David Lo

 Motivation: Pre-trained models of code achieved great suc model sizes and high response latency; For modern IDE or editor design, 3 MB model second latency are preferred modern IDE or editor 	ccess but have hugeContribution:size and 0.1• Compressor, a nove (GA)-guided modeditor design [1, 2].• Evaluate Compress two downstream tage	el compression method via genetic algorithm l simplification and knowledge distillation. <i>or</i> with CodeBERT and GraphCodeBERT across asks. The results validate the effectiveness.			
	Methodology				
	Hyperparamete	r Pre-trained Models Search Space			
Search	number of network	ayers 12 [1, 12]			
	dimensionality of netwo	ork layers 768 [16, 768]			
	number of attention	heads 12 1, 2, 4, 8			
Model Simplification	Small model dimensionality of feed-for	ward layers 3072 [32, 3072]			
▲ Knowled	ge 🛉 vocabulary size	50265 [1000, 50000]			
distillatio	Search space	Search space of GA-guided model simplification			
Query	Fitne Fitn	$Fitness(s) = GFLOP \ s - t_s - T $ Fitness function of GA-guided model simplification			
Pre-trained model Un	Unlabeled data $\mathcal{L} = -\frac{1}{n} \sum_{i} softmax(\frac{p_i}{T}) \log\left(softmax(\frac{q_i}{T})\right) T^2$				

Knowledge distillation loss function

		Experim	ent Results			
Model —		Vulnerability Prediction		Clone Dete	Clone Detection	
		Accuracy (%)	Drop (%)	Accuracy (%)	Drop (%)	
CodeBERT (481 N	AB)	61.82	_	96.20	_	
$BiLSTM_{soft} (7.5 N)$	1B)	57.86	3.96	83.93	12.27	
Compressor (3 M	B)	59.44 (96.15%)	2.38 (-39.90%)	95.43 (99.20%)	0.77 (-93.72%)	
GraphCodeBERT (48	81 MB)	61.38	_	96.62	_	
$BiLSTM_{soft} (7.5 N)$	1B)	58.02	3.36	84.08	12.54	
Compressor (3 M	B)	59.99 (97.7 4%)	1.39 (-58.63%)	94.22 (97.52%)	2.4 (-80.86%)	
Average Maintained Accuracy	//Improvements	96.95%	-49.27%	98.36%	-87.29%	
$\mathbf{RO1}$	an Compressor resi	ilt in small accuracy lo	ss when extremely compressiv	ng the pre-trained mode	<u>1</u> 2	
RQ1: C Answe Model	Can <i>Compressor</i> rest er: Compressed mod Vulnerability Prediction	ult in small accuracy lo dels maintain 96.95% an Clone Detection	ss when extremely compressinned 98.36% of the original perfo	ng the pre-trained mode rmance on the two task Vulnerability Prediction	el? cs. Clone Detection	
RQ1: C Answe Model	Can Compressor rest er: Compressed mod Vulnerability Prediction Later	ult in small accuracy lo dels maintain 96.95% an Clone Detection ncy (ms)	ss when extremely compressin nd 98.36% of the original perfo 	ng the pre-trained mode rmance on the two task Vulnerability Prediction Time	el? cs. Clone Detection e Cost (min)	
RQ1: C Answe Model – CodeBERT (481 MB)	Can Compressor rest er: Compressed mod Vulnerability Prediction Later 1507	ult in small accuracy lo dels maintain 96.95% an Clone Detection ncy (ms) 2675	ss when extremely compressin nd 98.36% of the original perfo Stage CodeBERT Fine-tuning	ng the pre-trained mode rmance on the two task Vulnerability Prediction Time g 49	el? s. Clone Detection e Cost (min) 124	
RQ1: C Answe Model – CodeBERT (481 MB) <i>Compressor</i> (3 MB)	Can Compressor rest er: Compressed mod Vulnerability Prediction Later 1507 347 (-76.97%)	ult in small accuracy lo dels maintain 96.95% an Clone Detection ncy (ms) 2675 625 (-76.64%)	ss when extremely compressin nd 98.36% of the original perfo Stage CodeBERT Fine-tuning Compressor (3 MB)	ng the pre-trained mode rmance on the two task Vulnerability Prediction Time g 49 13 (26.53%)	el? s. Clone Detection e Cost (min) 124 47 (37.90%)	
RQ1: C Answe Model CodeBERT (481 MB) <i>Compressor</i> (3 MB) GraphCodeBERT (481 MB)	Can Compressor rest er: Compressed mod Vulnerability Prediction Later 1507 347 (-76.97%) 1209	ult in small accuracy lo dels maintain 96.95% an Clone Detection ncy (ms) 2675 625 (-76.64%) 1788	ss when extremely compressin nd 98.36% of the original perfo Stage CodeBERT Fine-tuning <i>Compressor</i> (3 MB) GraphCodeBERT Fine-tur	ng the pre-trained mode rmance on the two task Vulnerability Prediction Time g 49 13 (26.53%) ning 73	21? s. Clone Detection 243	
RQ1: C Answe Model – CodeBERT (481 MB) <i>Compressor</i> (3 MB) GraphCodeBERT (481 MB) <i>Compressor</i> (3 MB)	Can Compressor resu er: Compressed mod Vulnerability Prediction Later 1507 347 (-76.97%) 1209 429 (-64.52%)	ult in small accuracy lo dels maintain 96.95% an Clone Detection ncy (ms) 2675 625 (-76.64%) 1788 326 (-81.77%)	ss when extremely compressin nd 98.36% of the original perfo Stage CodeBERT Fine-tuning <i>Compressor</i> (3 MB) GraphCodeBERT Fine-tun <i>Compressor</i> (3 MB)	ng the pre-trained mode rmance on the two task Vulnerability Prediction Time g 49 13 (26.53%) ning 73 25 (34.25%)	el? s. Clone Detection • Cost (min) 124 47 (37.90%) 243 88 (36.21%)	

RQ3: How fast is *Compressor* in compressing pre-trained models? Answer: Compressor only incurs 30.39% and 37.06% additional time to the fine-tuning time, which we believe to be reasonable.

RQ2: How much efficiency improvement can the compressed models obtain?

Answer: Compressed CodeBERT and GraphCodeBERT are 4.31× and 4.15× faster than the original model at inference.

Reference

[1] Alexey Svyatkovskiy, Sebastian Lee, et al. "Fast and memory-efficient neural code completion." MSR 2021. [2] Gareth Ari Aye, and Gail E. Kaiser. "Sequence model design for code completion in the modern IDE." arXiv, 2020.

